Question	Expected Answers	Marks	Additional guidance
1 (a) (i)	Horizontal component of L provides the centripetal force (WTTE)	B1	
	Vertical component of L balances the weight (WTTE)	B1	
(a) (ii)	$F = mv^2/r$ correct rearranged into $v = \sqrt{(Fr/m)}$	C1	Allow correct substitution of
	$v = \sqrt{(1.8 \times 10^6 \times 2000 / 1.2 \times 10^5)} = 173 \text{ m/s}^{-1} \text{ (or 170)}$	A1	values into $F = mv^2/r$ for C1 mark
(b)	$mv^2/r = GMm/r^2$	B1	Do not allow a bare $v^2 = GM/r$ for
	$T = 2\pi r/v$ $A_{\pi^2 r^3}$	M1	the first mark – we need to see
	Correct manipulation of equations to give $T^2 = \frac{4\pi^2 r^3}{GM}$	A1	where this has come from.
(c) (i)	Equatorial orbit (WTTE) (QWC mark)	B1	QWC equatorial or equator must
	Period is 24h/1day/same as Earth OR moves from West to East (WTTE)	B1	be spelled correctly
(c) (ii)	Correct rearrangement of $T^2 = (4\pi^2 r^3/GM)$ to give $r^3 = T^2GM/4\pi^2$	C1	$(1 \text{ day} = 8.64 \text{ x} 10^4 \text{ s is given on})$
, , , ,	correct sub. $r^3 = \{6.67 \times 10^{-11} \times 6.0 \times 10^{24} \times (8.64 \times 10^4)^2\} / 4\pi^2 = 7.57 \times 10^{22}$	C1	the data sheet).
	$r = 4.23 \times 10^7 \text{ m} \text{ (or } 4.2 \text{ or } 4.3 \times 10^7 \text{)}$	A1	For those who use $g = GM/r^2$
			with g = 9.81 award 1 mark
			for $r = 6.4 \times 10^6 \text{ m}$.
	Total	12	

Question	Expected Answers	Marks	Additional guidance
2 (a)(i)	resultant OR net OR overall force acts (on object) perpendicular to the	B1	Ignore any reference to
	velocity OR towards the centre of the circle		"centripetal force"
(a)(ii)	velocity OR direction is always changing	B1	Allow a (resultant) force is acting
	acceleration is in direction of force OR is towards the centre/perp. to	B1	(hence there is an acceleration))
	velocity		
(b)	centripetal force OR $mv^2/r = GMm/r^2$ OR $v^2/r = GM/r^2$	C1	
	$v^2 = GM/r \Rightarrow r = GM/v^2$	C1	
	$r = 6.67 \times 10^{-11} \times 6 \times 10^{24} / 3700^2$	C1	
	$r = 2.92 \times 10^7 \text{ m}$	A1	
(c)(i)	Any mass ejected in the same direction as the satellite (WTTE)	B1	Idea of rocket motor pushing
			against direction of motion of
			satellite.
(c)(ii)	$v^2r = constant OR v^2 = GM/r OR v = \sqrt{(6.67x10^{-11}x6 x 10^{24})/2x10^7}$	C1	
	new v = $\sqrt{(3700^2 \text{ x}2.94/2)}$ = 4500 m s ⁻¹ (4473)	A1	
	Total	10	